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General vector basis function solution of Maxwell’'s equations
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A general method for solving Maxwell’s equations exactly, based on expansion of the solution in a complete
set of vector basis functions, is developed. These vector eigenfunctions are derived from the complete set of
separable solutions to the scalar Helmholtz equation and are shown to form a complete set. The method is
applicable to a variety of problems, including the study of near and far field electromagnetic scattering from
particles with arbitrary shapes, for particles whose characteristic length dcale, the wavelength of the
incident electromagnetic wavgS1063-651X97)06907-9

PACS numbe(s): 03.40.Kf, 03.50.De, 02.60.Lj

I. INTRODUCTION using a special type of transformation. The subject was de-
veloped further by Strattofil2], who solved the problem of
The subject of obtaining the solution of Maxwell's equa- Mie scattering using a set of vector functions derived from
tions in a boundary value problem has kept scientists occuthe solutions of the scalar Helmholtz equation. Subsequently,
pied for more than 100 yeaf&]. Many contemporary prob- Aden and Kerkef13] used the formalism to solve the prob-
lems of interest involve our knowledge of the exact solutionlem of electromagnetic scattering from two concentric
to these equations. However, the complexity of these equapheres. Although Strattdi 2] had made considerable con-
tions has defied analytic solutions for all but the simplesttributions in the area of basis function expansion, the method
cases. of solution was still considered as just another “more el-
In a scattering problem, for example, there are twoegant” way to solve the Mie problem, analogous to the ap-
lengths involvedd, the physical size of the scattering object proach of Deby¢8]. The crucial idea that was missing at this
and\, the wavelength of electromagnetic waves in questionstage was the notion of mathematical completeness of basis
Whend>\, called the geometrical optics limit, the problem function expansions. Furthermore, the algebraic difficulties
is readily solved. Wherd<<\, also called the quasistatic one had to overcome restricted the Stratton approach to the
limit or nano-optics, the solution is obtained by solving solution of the spherical scatterer problem with incident light
Laplace’s equation. The problem is far more complicatedapproaching along the- axis only. Progress in this subject
whend=\. It is in this regime that one is required to solve was negligible beyond this stage and the problem is repro-
Maxwell's equations exactly. Although the general theoreti-duced in its original form even in contemporary textbooks
cal aspects of Maxwell's equations are fairly well understood 14,15. The problem of diffraction of a plane wave at nor-
at the momen{1,2], there are still some formidable math- mal incidence on a circular cylinder was originally solved by
ematical or computational problems to overcome. WhereaRayleigh and since then his solution has been generalized
the problem of acousti¢scalar fields diffraction has been and extended to plane waves at oblique incidgriéd. The
solved in a number of cases such as the strip, elliptic cylinmethod of basis function expansion was used in this problem
der, hyperbolic cylinder, wedge, prolate and oblate spheas well. Similarly, the problems of electromagnetic and
roids, etc.[3], the corresponding solution for the time- acoustic scattering from a semi-infinite cdd€] and a semi-
varying vector fields is still by and large unconguered. Ofteninfinite body of revolutior{ 18] were obtained by the method
the solution is worked out only in the quasistatic approxima-of basis function expansion. For the special case of the pa-
tion by solving Laplace’s equatioihomogeneous cage raboloid, the solutions were “exact.” Some other notable
[4,5]. geometries for which the exact solution of electromagnetic
In the absence of sources, Maxwell's equations, which arscattering has been obtained in three dimensions include the
coupled partial differential equations, have been solved angrolate and oblate ellipsoids. Certain two dimensional cases,
lytically, only for a few isolated special cases. The simplestsuch as the circular, parabolic, and elliptic cylinders, are also
canonical case of the scattering of plane waves reflecting aamenable for exact solutiop3]. However, for arbitrary geo-
refracting at a planar interfadé] is commonly known as metrical shapes one has to resort to solving the Maxwell
Fresnel's equations. The most celebrated analytic solution tequations by finite element numerical techniques. The gen-
the scattering problem is that of Mie scattering, the scatteringrality of these approaches was not apparently proved be-
of electromagnetic waves from a dielectric sphigfk origi-  yond the specific geometries these earlier researchers were
nally due to Mie(1908. Debye was able to formulate the interested in.
same problem in terms of a pair of coupled scalar functions In the mid 1960s there began a growing interest in the
[8], in which the electric and magnetic fields were expressedstudy of Maxwell's equations as a purely mathematical prob-
The method was suitable for boundary value problems withem [1,2]. For example, it was found that any electromag-
spherical boundaries only. Hansgh-11] developed a tech- netic response within a perfectly conducting cavitysona-
nique for addressing the problem of radiation from antennasor) could be expressed in a complete set of functidng].
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In this paper we discuss a general method for solvingsoidal time dependence, the solutigfr,t) can be obtained
Maxwell's equations in a boundary value problem with lin- by the technique of separation of variables. The separation
ear, isotropic, homogeneous, and time-invariant media. Wgrocedure reduces the partial differential equation to several
introduce the diffraction equation in the next section. Nextordinary differential equations. The separated equations can
we prove the existence of a complete set of eigenfunctions dfften be cast in the form of the well known Sturm-Liouville
the diffraction operator. This is followed by deriving the eigenvalue problem for second order ordinary differential
eigenfunctions in a spherical-polar coordinate system and thgquations, so that the solution space is guaranteed to be com-
expansion coefficients for an arbitrary plane wave in theplete for the scalar Helmholtz equation.
complete set of eigenfunctions. We then demonstrate nu- For the moment assume that we have obtained a complete
merical convergence aspects of these eigenfunction expaget of scalar functiongy} that are solutions to the scalar
sions. Finally, we apply the technique of vector basis funcwave equatiofEq. (7)]. We introduce the diffraction equa-
tion expansion to the problem of scattering of tion
electromagnetic waves from an elongated scatterer.

V(V-G)—VXVXG+k’G=0, )
Il. THE MAXWELL EQUATIONS

For the interesting subclass of problems that are related twhere_kz_z w?pe. The diffraction equation Is satisfied by the

the scattering of electromagnetic radiation by dielectricelecmc field E and the magnetic fieldH that satisfies the

and/or magnetic boundaries, Maxwell's equations assume YECtor Helmholtz equations since the “extra” terf- G
symmetrical form. Within the approximation of a linear, Will & zero for fields that have zero divergence. So, 4.

time-invariant, homogeneous, and isotropic medium withoutS consistent with Maxwell’s equations for electromagnetic
any external sources, Maxwell's equations are, assumin aves. We define a vector function that is obtained by taking

sinusoidal time dependence of the external fietdd®t, e gradient of the scalar functioft

V-E(r,0)=0, ) L=Vy. 9
VXE(r,o)=iouH(r,n), (2 L satisfies the diffraction equation if is a solution to Eq.
(7):
V-B(r,w)=0, ©)

V(V-L)-VXVXL+k°L

=V(V-V§)—-VXVXVy+k>Vy
Here we have assumed the possibility of an induced current _ 2 > . _
density in the medium equal ®E, whereo is the conduc- =V(Viy+k)  (sinceVXVy=0)
tivity of the medium under consideration. Thus we obtain a =0 (since V2y+k?y=0). (10)
set of coupled partial differential equations in the spatial co-
ordinates alone, with the angular frequency of the excitationNow let us assume that there exists a vector fundigrwith
as a parameter. ) ) ) zero divergenceV-M =0, that is a solution to the diffrac-
i Using the facility of complex dielectric functions, tion equation [Eq. (8)]. Let us consider the vector
e=e+iolw, we obtain the vector Helmholtz equations for N=(1/k)V X M. Assumingk is a constanthomogenous me-

VXH(r,w)=0cE(r,o)—iweE(r,w). (4

the electric and magnetic field vectors: dium), we obtain
VXVXE—w?ueE=0, (5)  V(V-N)—VXVxXN+k?N
- 1
VXVXH-w’ueH=0. (6) = L [V(V-VXM) = VX VXV XM+KVXM]

These equations are totally symmetrical and decoupled in the _
field variables. It is the solution to the vector Helmholtz =Y X[~ VX(VXM)+k?M] [sinceV - (VXxM)=0]
equations for specified boundary and radiation conditions  —yx[Vv(V.-M)—Vx(VXM)+k>M]

that describes the scattering of electromagnetic waves. How-

ever, these equations are vector partial differential equations (sinceV-M=0)

which are sufficiently difficult to solve in general.

The theory of solving the scalar Helmholtz equation, also
known as the wave equation, is a very well developed sub- . -
ject[19—21. This equation describes the propagation of scat NUS We show thaN, as defined above, also satisfies the
lar waves, such as acoustic waves, in a medium. diffraction equation. Alsd&v - N=0, since divergence of curl

is zero. So, if we had started with postulating the existence of
V2y(r,t) +k2y(r,t)=0. 7) a vector functionN with zero divergence, we could show
that there exist81 with zero divergence. Thus from symme-
When expressed in certain orthogonal curvilinear coordinatéry arguments alone, we could writd =(1/k)V X N. Spe-
systems, such as the Cartesian coordinate system or tledically, sinceN=(1/k)V XM, sincek is a constantby as-
spherical-polar coordinate system, under assumption of sinissumption of homogeneity of the mediym

=0 [sinceM satisfies Eq.(8)].
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1 [ll. COMPLETENESS OF VECTOR EIGENFUNCTIONS
VXN==VXVXM, i ) i
K Our goal is to represent the solution of electromagnetic

scattering problems in a series of vector eigenfunctions of
the diffraction operator: to do so, such a set must be com-
1 . )
VXN=-k?M [follows from Eq.(8)]. plete (in a mathematical senseln other words, the set of
k functions under consideration must form a basis. It can be
shown that the solution space of the diffraction operator can-
ThusM = (1/k)V X N. Clearly,M andN are distinct fromL,  Not be spanned by any finite set of functions. Assume mo-
since the latter has nonzero divergence in general. 8Bmst ~ mentarily that we have obtained only thg functions from
be linearly independent dM,N}. It is up to us to create a the scalar solution, and that we have no knowledge about the
vector functionM (or equivalentlyN) from the given scalar existence of thé/, or N, functions. So we have a countably
function #, such that it will have zero divergence and will infinite set of functions that satisfy the diffraction operator.
satisfy the diffraction equation. The point to note is that weBut it is easy to prove that such a set does not form a basis.
could arrive at more than one set of functidhé,N}, and it In other words, there are elements in the solution space that
is the relative algebraic convenience that will dictate theare independent of the, functions. For example, thsl,
choice of a particular set. functions defined ak,x a are clearly orthogonal to thi,,

As a concrete example, let us consitier V Xay, where  functions. Naturally, the same concerns are valid even with
¢ is the given scalar solution aralis an arbitrary constant knowledge of the larger set containing all three types of
vector. The divergence condition is satisfied, since diverfynctions. We do need to address the question of whether or
gence of curl is |der_1t|cal!y zeroV-MzV-(an_z/_;)zo.. not the sefL,,M,,N,} is a complete set.

Using the operator identitythe author has verified this It is a well established fact that the set of all plane wave

“identity” for the spherical-polar coordinate sytem and the solutions forms a complete set in the solution space of the

cylindrical coordinate system in addition to the rectangular, : I
coordinate system V(V-M)—VxVxM=V2M, we can vector Helmholtz operator. Physically this implies that any

write: scattergq wave can be constructgd by.linear additipn or su-
' perposition of plane waves. The diffraction operator is some-
what more general than the vector Helmholtz operator in the

V(V-M)—VXVXM-+k’M sense that it is satisfied by “generalized plane waves” which
could have nonzero divergence. The vector Helmholtz equa-

=V2M+k*M tion, which follows directly from Maxwell's equations in a
) 2 homogeneous and isotropic medium, is satisfied only by the
VAV Xay) + k(v xay) zero-divergence solutions. Within a nonisotropic medium in
=VIVyxat+y(Vxa)]+KIVyxa+ y(Vxa)] which momentum transfer can occur, such as in a crystal, the

E need not be perpendicular g and the zero-divergence
=V2(Vyxa)+k?(Vyxa) (sinceV xa=0) solutions cannot describe such a wave.

) 5 ) 5 Although the set of all generalized plane waves spans the
=(VA(Vy)+k°Vi)xa (sinceV* does not act ore) solution space, there is a fundamental difficulty with such a
_ 2 2 B . . set, arising from the fact that such a set is uncountable. In
=[V(Viy+kiy)]xa=0 (sincgy satisfies Eq(7). other words, the lab@) to identify the individual elements
of the set are in this case continuous variakflesing the
Also, M=V Xay=Vy¢yXa=LXa. So,M-L=0,i.e.,L and value of the propagation vector, and its direction cosines, and
M are orthogonal. Thus, given a countably infinite set ofthe direction cosines of the electric figldlthough such sets
particular solutions to Eq7), {«,}, that are finite, continu- are not easily amenable for construction of general scattered
ous, single valued, and with continuous partial derivativeswave solutions, a countable basis can be used to construct
associated with eacth,, one can obtain a triplet of mutually solutions in a straightforward manner.
noncoplanar vector solutions,,M,,N,}, satisfying Eq. To begin, the solution space of the diffraction operator is
(8). Presumably, any arbitrary solution of the diffraction linear, has an inner product and a metric. The space is com-
equation can be expressed as a linear combination of thegdete since there exists the plane wave set which we know is
vector functions. However, the existence of a generalizeé complete set. With these properties satisfied, the set of all
Fourier series expansion supposes that thelsgtM,,,N,}  solutions of the diffraction operator forms a Hilbert space.
forms a complete set. The inner product can be defined, as will be seen when con-

Proving the completeness of the §kt,,M,,,N,} isatwo  sidering the solutions in a particular coordinate system, such
step process. First, one has to prove the existence of a coras the spherical polar coordinate system.
plete set of functions for the diffraction equation. Next, one It can be shown that ife} is an orthonormal set in a
has to show that th¢L,,M,,N,} set can indeed span the Hilbert spaceH, and if x is any vector inH, then the set
solution space of the diffraction equation, or equivalently,S={g :(x|g)# 0} is either empty or countab[@2]. The im-
the vector Helmholtz equations. If the labeling indeis not  portance of this theorem is that this guarantees a countable
countable, then an arbitrary solution could be expressed aslmsis if it exists. It can also be shown that every nonzero
generalized Fourier integral of the basis functions with re-Hilbert space contains a complete orthonormal set. This fol-
spect to the labeling parameter. lows from fundamental axioms of set theory embodied in
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Zorn’s lemma[23]. Thus a Hilbert space contains a count- more restricted space of square-integrable functibAswith
able basis. a semimetric. We know that the scattered solutions have to
satisfy the radiation conditions, i.e., they have to vanish at
infinity in a square-integrable sense. This follows from the
A. Completeness of the L, M, N set finite energy content in any scattered wave from finite ob-

We have already seen that we can arrive at a sdects. TheL, M, andN functions satisfy such conditions. It
{Ln.M,,N,} of vector eigenfunctions that are mutually non- ¢an be showiithe Reisz-Fischer theorerthat every Cauchy
coplanar. In generd y,, andV i, are different functions of Sequence in the semimetric spaceconverges to a function
position coordinates. Similarly, it can be argued that the seif L?, or that it is completg24].
of vector eigenfunctions is such that at any given point in Although the set of functionfL,,M,N,,} is not entirely
space, they are not all pointing in the same direction. IrPrthogonal, it is a linearly independent set. This allows us to
mathematical language, the set is linearly independent. Thi@voke the process known as Gram-Schmidt orthonormaliza-
set also has a countably infinite number of elements in tfion to obtain a complete orthonormal set from a given set of
The scalar functiong,} are continuous with continuous linearly independent vectof22]. In practice, this is not al-
partial derivatives up to at least second order. This impliegvays necessary.
that the derived vector functions are continuous as well.

Assume that we are given an arbitrary solution to the B. Zero-divergence solutions

diffraction equationx. By saying that we are given the so-  cqngiger a solutiorF whose divergence is zero. Let us

lution, we mean that its value has been specified at a giveﬂnd an expansion of in terms of the basiéL ;M ,N,}, S0
set of pointsS={x;,X,, . . .}. For the moment let us assume nmnen

that this setS is a countable set, as we have indicated by
subscripting with natural numbers. For example, if the value
has been specified at all coordinatesy(z) wherex,y,z F=§ {asMp+byNy+cplp}. (13)
e{p/q:p,qel}, then the set can be shown to be countable.
Thus the specified set of points can be put in one-to-ongaking the divergence of both sides of the above equation,
correspondence with an index set, such as the natural nunyze find
bers.
Now if we pick the first specified point where the function
is defined, we obtain a vector of a certain magnitude which v F:; {anV-Mp+bV-Ny+c,V Lo}
points along some specified direction. We can immediately
pick the triplet of solution§L,,M;,N;}, and by virtue of ¢
their linear independence, we can choose suitable coeffi-
cients so that the sura;L;+b;M;+c;N;=x,, where the
coefficientsa; ,b;,c; are complex numbers. Since the left 0:; {caV-Ln}. (12)
hand side is a linear combination of solutions to the diffrac-

tion equation, we have a valid solution that is equal to thegjnce this must hold true at all points, we conclude that all
specified solutiork at one point. In general the diffraction the ¢, must be zero. In other words, a zero-divergence solu-

operator  will propagate the linear combination tion can be expressed only in terms of theand N func-
a;L;+b;M;+c{N; so that it will be different from the tjons.

specified solution at other pointsf it does not, then of
course we have obtained the desired expansion, and we can
stop the process hereéso assume that the linear combination
just obtained deviates from the solution at poinkg, Now The success of the method of vector basis function expan-
we can pick our second tripldl,,M,,N,}, and obtain a sion relies on our ability to express, conveniently, the inci-
“correction” to the original solution so that it matches at dent radiation in terms of these basis functions. Although the
both the points. Essentially, we are solving a system of sixcompleteness of this basis set guarantees the existence of
equations in six unknowns to satisfy the match at the twaunique coefficients for the expansion of an incident plane
specified points. Now it is easy to see that we can continugave, in practice this involves some nontrivial algebra. The
this process to “match” the specified function in an infinite goal is to obtain explicit expansion coefficients for a general
series of the set of vector eigenfunctions to any arbitraryplane wave in these basis eigenfunctions. Linearity of Max-
precision. By virtue of continuity of these functions, their well’'s equations implies that any excitation, nonplanar or
linear combinations are also continuous for any finite num-even nonperiodic, could in principle be solved from the
ber of terms. The difference between the arbitrary solutiorknown solution to plane wave excitations by use of Fourier
and the series just obtained can in principle be made as smalpace analysis.
as we wish; i.e., it forms a Cauchy sequence. We note that In principle, the set of basis functions obtained in any
the set of expansion coefficients so obtained neetlbe  general orthogonal coordinate system could be considered a
unique. It does depend upon the order in which we pickedralid set of eigenfunctions in which the solution could be
the vector eigenfunctions to satisfy the conditions for aexpressed. However, strictly algebraic and numerical consid-
match. erations favor the use of functions pertaining to the
The validity of the statement of convergence of arbitraryspherical-polar coordinate system, especially for systems
Cauchy sequences follows from general considerations of with azimuthal symmetry. The extensive analytical founda-

IV. THE L, M, N BASIS
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tion of spherical Bessel or Hankel functions as well as asso- F=EekT, (17)
ciated Legendre functions allows us to obtain the expansion
coefficients in closed form expression. Here E=E,e+E,g,+E,e, is the (oscillating electric field
The solutions to the scalar Helmholtz equation in of the p|ane Wavd&: (k,a,B) is the propagation Vector, and
spherical-polar coordinates are functions of the form r=(r,0,¢) is the position coordinate. To keep our deriva-
_ tion sufficiently general, we shall allow the orientation®f
U1, 0,0)~2zn(kr)P(cos g)e'm?, (13 andk to be along arbitrary directions. In reality, for a plane

electromagnetic wave in a homogeneous and isotropic me-
wherez,(kr) represents either the spherical Bessel functionglium, theE andk must be orthogonal, and so the divergence
jn(kr) or the spherical Hankel functions of the first kind, of F must vanish. We shall also allof ,E, ,E,, andk to
ht(kr). The spherical Bessel functions are regular at thd?® complex numbers. This represents any general elliptically
origin, whereas the spherical Hankel functions diverge at oPOlarized wave propagating in a medium that can be either
near the origin. So a region including the origin can onlyatténuating or amplifying. _ _
feature the spherical Bessel functions in its expression for 1h€ completeness of the set of functions validates the
the field. A region not including the origin can have con- following representation:
tributions from either of these functions. The labeling
index ne{0,1,2, ..} and me{0,=1,+2,...,=n}. The kT X X X
PM(cosd) are the associated Legendre functions. &€ % {@meMmnt DN+ Cnel o, (18)

Analogous to the definitions Strattdh2] uses, we obtain

explicit expressions for the, M, N functions[25]: .
g’ "= {an Mmn+ bl Nt Chiolmat, (19)
mn

Lin=V ¢mn
dzn(kr) i Zn(kr) dan(COSQ) ik-r_ z z z
=k d(kr) an(COS B)e'm¢er+ Kr a6 €€ % {amann+ bmnNmndl'CmnI-mn}- (20)
. z,(kr) PM(cos6) ; ;
X eMbe, +im n(Kr) Pp (. emde, |, (14) Therefore we can write the general plane wave expansion as
kr sin 6
Eek'=2 {(Eal, + Eyalnt Ezamn)Mmn
_ Pr(cos @) o
an=|mzn(kr).—0e'm¢e0 § , ,
sin + (Exbpyn+ E b n+ E05 )N
m
_Zn(kr)weimd’%ﬁ (15 +(Exc)r(nn+ EyC%lnn_F EzCann)Lmn- (21
If E is represented byH, 6, ,¢;), in the spherical-polar co-
and ordinate system, then

2. (kr) _ Ex=E sin ¢, cos¢;, E,=E sin ¢ sin ¢;,
Ny, =n(n+ 1)nk—ran(cos 0)emee,

E,=E cosé,. (22
1 drz,(kr) dPp(cos 6) mo
+W dr deo T Therefore we need to obtain the nine coefficients
{a)n.ah,, - - . €t Which are functions ofn,m,«,8}.
1 drz,(kr) P;(cos6) img It can be shown that the exponential part of the expression
M —ar sng ¢ &- (18 for a plane wave can be expanded in the following series:
V. PLANE WAVE EXPANSION IN L, M, N BASIS ek =" iS(2s+1)j4(kr)
s=0
The completeness of the set of functions M, and N .
assures us of the existence of a valid expansion series in this (s=D' ~ilgpl ilp
basis set for an arbitrary plane electromagnetic wave which X Z‘o (st Ps(cosa)e ""P(cos #)e
satisfies the diffraction equation. Once a valid set of coeffi-
cients is obtained, we can offer an operational proof of the S (s=h! gl |
completeness theorem. If any plane wave can be represented + lZ s+t Py(cosa)e!'’Py(cos e "?}.
in a convergent series of these functions, then it immediately -t '
implies that the set must be complete. This follows from the (23
fact that any scattered solution to the vector Helmholtz equa- .
tion can be constructed from a plane wave basis. We denotee.e’*'=E,, wherec denotesx, y, or z. We

Consider an arbitrary plane wave: introduce the notation
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* m . 2m <E |N ><Nmn|Lmn>_<Ez|Lmn><Nmn|Nmn>
drf desmaf d¢E-x*=JE.x*:Ex , ¢z =2 M0 _
jo 0 0 comn e Xmn = C| ) mn <Nmn|Lmn><|-mn|Nmn>_<Nmn|Nmn><Lmn||—mn>

where X, representd ,,, Mmnn, of Np,. We can view
(E¢|M mn as the definition of thenner productin the Hilbert
space of all solutions to the diffraction equation.

Fronz1 Eg. (20, we can calculate the -coefficients the basis set functions.

z z H . . .
{am”'_ar"ﬂ’cmn} using certain orthogongllty relation25]. ) The integrals represented by the various inner products in
Obtaining the inner product of both sides of the equationpe expressions for the coefficients require a good deal of
with respect td. iy, M, andNpp, respectively, we obtain - messy algebra and careful analysis for their evalugtsh

By substituting the labet with x ory in Egs.(24)—(26),
we immediately obtain the corresponding formula for the
remaining coefficients in terms of their inner products with

the following relations: The integrands involve products of spherical Bessel func-
tions, associated Legendre functions, as well as their deriva-
z _ (EfMump) (24) tives. The nontriviality of these integrations is amplified by
™M (Mpd My’ the fact that one has to evaluate a double infinite summation
(overs andl) to arrive at a closed form expression for these
» (EfLmn{LmnNmp = (Ez[Nma){Lmnl L mn) integrals. On substituting the expressions for these integrals

™ (Nl L) Ll N = (Nl Nmnd Lol L ) back into Eqs.(24)—(26), we finally obtain the functional
(25 form for the coefficientgfor m=0):

ap(n,ma,B) .. ,m2n+1) (n—m)!

m=0) " “nn+D) (nrmyrncoswe ™ @7
bZ(nme,B) i"t (n—m)! n(n—m+1)Pg, ;(cos @)

Tim=0) e - m 1 28
(m=0) ~ n(n+1) (n+m)! (n+1)(n+m)Py;(cosa)

Chn(nma,B) 1"t (n—m)!
(m=0)  k (n+m)!

(2n+1)e "™PcosaPl(cos a). (29

We observe that whea= 7/2, so thatt andk are perpendicular to each other as in a plane electromagnetic wave, all the
c;,, coefficients vanish, since the divergence of such a field is zero. Wted or 7 all the a%,,, coefficients vanish since
P(£1)=0 for m>0, anday,, vanish form=0 because of the factan in its expression. Similarly, the?,, vanish for

a=0 or 7 sinceP'(£1)=0 for m>0, and form=0 Pn,(tl)(—l)”' for m=0 so that the expression within the square
brackets becomes fan=0, n(n+1)1—(n+1)n=0. So whena=0 or 7 only thec?,, coefficients can be nonzero.

Whenm<0, we can arrive at the corresponding coefficients by examining the changes that occur in the expressions for the
individual inner product terms. It can be shown from considerations of parity of the associated Legendre f{@G}idvas the
corresponding coefficients when<0 are given by

a’ ,(n,m,a,B)

(n+m)!

(m=0) = (- DM A m,a, ), (30)
b% «(n,m,a,B) o s (NEML

(m=0) =(-1"e? B(n_m)!bmn(n,m,a,ﬁ), (31)
c® mr(n,m,a, B) i oimg(MTM!

(m=0) =(—1)"e? Bmcmn(n,m,a,ﬂ)- (32

Similarly, thex coefficients are given as

ak (n,m,a,B) , (2n+1) (n—m)! (n+m)(n=m+1)PF*(cosa)e ™D~
mn ! L —in+ )

(m=0) 2n(n+1) (n+m)! +P™(cosa)e (MDA, (33




1108 DIPANKAR SARKAR AND N. J. HALAS 56

(n+1)(n+m)(n+m—1)P"(cosa)e (M 1A

_ m+1 —i(m+1)8
biinmag) ., 1  (n—m (n+1)Py-y(cosaje ™
(m=0) ' 2n(n+1) (ntmyt 1| Fn(n—m+2)(n—m+1)PN }(cosa)e MDA (34

—nP™(cosa)e (MDA

(n+m)(n+m—1)PM"L(cosa)e (M DA

—P™(cosa)e (MLE

clnma,B) "Mt (n—m)! ‘
(Mm=0) 2k (ntm)! | —(n=m+2)(n—m+ 1P H(cosa)e (M DA (35

+PM L cosa)e (MDA

For m<0, the easiest way to obtain the coefficients are the folloWa4:

a* —(—1)m+1(”+m)! ay,, with e (M1 factor -
-mn— (n—m)! Changed t@i(mil)ﬁ )
[ pX i —i(mx1)p
b” =(_1)m(n+m)! by, with e‘ factors -
—mn (n—m)!_changed tml(mtl)ﬁ ’
(n+m)![ ¢k, with e '(M=YAfactors
CX :(_1)m mn - (38)
- (n—m)!{ changed t@'(m* 4
The y-coefficients are obtained almost identically as compared witl tbeefficients. We have
+ -m+1)Pp-t —i(m-1)8
ama(nm,,8) ., (2n+1) (n—m)! (mrmn=mey nm+1(Cosa)e4 +1 (39
(m=0) ' 2n(n+1) (n+m)! P (cosa)e MDA,
(n+1)(n+m)(n+m—1)P""}(cosa)e (MDA
bhn(n,m, e, 8) 1 (n—m) +(n+1)Pi*l(cosa)e (M A
il il y _n B § )
(m=0) ' 2n(nt1) (nrmyt | Fn(n—m+2)(n—m+1)Py}(cosa)e (M VA (40)
+nPpi(cosa)e” (M YA
(n+m)(n+m—1)P"" Y cosa)e (M VA
Chn(N,M,,B) 1" (n—m)! +P™cosa)e (MDA
= 2k T X —(n—m+2)(n—m+1)P™ X cosa)e (MDA |. (41)
(m=0) 2k (n+m)! ol
— an:]_l(COSa)e_i(m+ 18

Transformations similar to what was used for gheoefficients form<0 are going to be valid for thg coefficients as well.
Thus they coefficients for negativen can be obtained as followfsote the extra { 1) factor as compared to ttre
transformationk

y 1 _(n+m)!fak, with e”'™=DPfactor .
a_mn_(_ ) (n—m)! Changed t@i(mil)ﬁ ) ( )
by wi —i(m=1)8
bY =(—1)m+1w by with e factor -
—mn (n—m)!_changed t@ (M=1)A )
Y :(_1)m+1(n+m)!—C|¥nn with e~ '(M=Y# factor »
-mn (n—m)!_changed t@ (m=1)8 .
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DEMONSTRATING COMPLETENESS OF BASIS FUNCTIONS
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FIG. 1. Demonstrating completeness of basis
function expansion. The expansion of an arbi-
trarily chosen wave in the, M, andN functions.
The solid lines show exact values. The broken
lines are computed from a truncated series in the
basis functions. The above calculations are done
with 15 terms 6=15) for kre [0,12], 6=37°,
$=59°, «a=123°, B=83°, 0.,=49°, and
$.=21°. Convergence is very good for
|kr|=<0.75. The horizontal axes are in units of
|kr].

n, wheren~1.4kr|. This can provide us with the guideline

It may be pointed out that the coefficients for the expan-On how many terms to include for a problem in which the

sion of an arbitrary plane wave in terms of theM, N basis

geometry can be measured in units\gfthe wavelength of

are not necessarily unique. Alternate sets of expansion coefbe electromagnetic field in question.

ficients can be obtained by rearranging the basis. This fol-

In Figs. 1 and 2 we show the expansion of arbitrary elec-

lows directly from the general theory of orthonormal bases irfromagnetic waves in the, M, N basis. We have specified
Hilbert spaces. Since one can expand any plane wave in thign arbitrarily directed wave vectdr with direction cosines
basis, as discussed earlier, one can obtain an operationalandg, with the electric field oriented along some arbitrary
proof of the completeness of this basis. It is also important talirection specified by the angleg and ¢.. The values of

address the question of convergence as well. So numerictlie exact expression fdte

kI and the series expansion in

verifications are absolutely necessary to validate a certaitheL, M, N basis are compared along some arbitrarily speci-
basis set. To summarize the results, convergence of bettéied line directed along{, ¢). We observe that the conver-
than 1% is normally achieved by taking terms up to indexgence is very good fofkr|<0.75 and this is fairly inde-

DEMONSTRATING COMPLETENESS FOR COMPLEX ARGUMENTS

(=]
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03 0.3 : :
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FIG. 2. Demonstrating completeness of basis
function expansion when the specified wave vec-
tor is complex. The solid lines show exact values.
The broken lines are computed from a truncated
series in the basis functions. The above calcula-
tions are done with 15 termsng&15) for
Krma—=10+8i, 6=35°, ¢=42°, «a=97°,
B=82°, §,=21°, and¢p.=79°. Convergence is
very good for|kr|<0.75. The horizontal axes
are in units ofikr|.
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pendent of the choice of the specified directionsEaandk 1

as well as the path along which the comparison calculations E(an""M:qn):memn- (48)

are made. In Fig. 1 the wave vector is real whereas in Fig. 2

the wave vector is complex. Complex wave vectors corre- 1

spond to an attenuating or amplifying medium. We therefore E(Nmn_ N ) =Nomn, (49)

demonstrate that these functions can be used to expand an

electromagnetic field in a general medium. Since the speci- 1

fied E andk are not orthogonal in generés in the above (Nt N )= 50
.ok . ( mn mn) nemn- ( )

two casey it is therefore possible to expand waves that are 2

more general than plane electromagnetic waves in a nonat-

tenuating medium. We assume the scattered electromagnetic fields in the two

regions to have the following formgexpanding in the

VI. SCATTERING FROM NONSPHERICAL OBJECTS m=0 terms only :

. X - 1j A1
expansion, we discuss an “exact” method of solution for emnt BmnMomn/» (51)

scattering from an object whose boundaries do not conform

to the coordinate surfaces in a given coordinate systam P

spherical-polar coordinate system in this gase Hy=—i\ [ > {brlT{nméJ'mnjL arlT{nn;im , (52
The scattering object is a “capsule,” composed of two M1 n=1m=0

hemispheres of radiuR, separated by a cylinder of radius .

R and lengthL. The origin is chosen to coincide with the

center of the lower hemisphere as indicated in Fig. 3. When E2:n§=‘41

L—0 the capsule degenerates to a sphere of rd&eliwhose

scattering solution can be obtained exactly. The axis of sym- o 2N

metry coincides with the axis. Hy=—iv—= > > {b2hm2h 4 a2hn2h 1 5y
The eigenfunctions satisfy Maxwell's equations as well as M2 n=1m=0

the boundary conditions at infinity. The expansion coeffi- ) ) )

cients of the scattered solution are determined by requiring FOf €ach point on the surface, we can write down six

that the boundary conditions on the surface of the “capsule"®duations corresponding to the boundary conditions. Not all

are satisfied at a finite number of chosen points. In principle® them are linearly independent. In fact wher- 0, corre-

the larger the number of points we choose to specify, théPonding to a sphere, the equations of continuity of the tan-

more accurate will be the description of the boundary. gential fields ofE andH alone will yield a linearly indepen-
Thus there are two regions: inside the capsule surfacdent set:

where the dielectric function ig;, and outside the surface

where the dielectric function is,. We assume, to be a real z-gxis

o0 n
As an application of the method of vector basis function - :
pp Elzngl mgo {alj ml]

M:

2h 2h 2h 2h
o {amnmemn+ bmnnomn}1 (53)

function of the incident wave frequency. This validates the N
expansion of the incident electric field in the spherical Bessel ;
function solutions. Since the origin is enclosed within the
surface, the solution in region 1 will have the spherical K B
Bessel function solutions only.
Consider ans-polarized incident wave of unit strength €, | &€
(|Ei|=1) with the polarization oriented along tlyeaxis and
k confined to thex-z plane (3=0): L
)
o0 n
EFE 2 {amnmgthrbmnnngr}, (45) c
n=1 m=0 6]
R
€ ~ n D
. 2 - i i
Hi=—i — E 2 {bmnmgjmn"'amnnglmr}a (46) |
M2 n=1 m=0 ! :
(a) (b)

wherea,,,= 2a},, andb,,,= 2ib}, ,, and the superscript 2 for

the m andn functions refers to medium 2. The superscripts  FIG. 3. (a) Geometry of “capsule” shaped scattering object.

j andh refer to spherical Bessel functions or spherical Han-Two hemispheres of raditR are attached to the end of a cylinder

kel functions of the first kind. Here of lengthL. Letting L— 0, the capsule degenerates to a sphime.
Approximating the azimuthally symmetrical surface by means of
the discrete set of anglek . r as a function of is specified by a

(47) piecewise continuous functiom indicates the normal ant the

Mon—M* Y=Mgmn,
mn~ Minn) =Momn tangent orthogonal te, .

E(
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FIG. 4. Near field electromagnetic scattering from a spherical FIG. 5. Near field electromagnetic scattering from a “capsule”
scattererR=0.5\ andL=0. The incident light approaches along scatterer.R=0.5\ and L=0.3\. The incident light approaches
6;=0°. Polarization is directed perpendicular to the plane of thealong g, =60°. Polarization is directed perpendicular to the plane of

figure. the figure.

E; t1=E,-t;+E;-tq, (55  would tend to give us increasingly better approximations to
the exact solution but at the expense of increasing the size of

Ei-ta=Ex tr+Ei-ty, (56)  the boundary-condition matrix. The system is deliberately
allowed to be an overdetermined systénumber of rows

Hi-ti=Hp ti+Hi- by, (57 M>N, number of columnssince we are considering scat-
tering objects with arbitrary shapes. We can solve the system

Hy-ta=Ha to+Hi 15, (58) in a least-squares sense.

In Fig. 4 we show the near field calculation of a spherical
atterer L=0), with the incident wave approaching along
0= 0°. The sphere allows us to verify the method of solution.
Poynting vector calculations done using the basis function
solution, both in the near and far fielf25], are in excellent

In general, we have the remaining two equations arising5
from the continuity of the normal componentsf eE and c
B= uH. Heren (without the subscrip}srefers to the normal
vector and not one of the field functions :

€,E;-n=e,E,-n+ &,E; - n, (590  agreement with existing literatuf@6]. In Fig. 5 we show the
calculation done on a capsule shaped scatterer with the inci-
miH1-n=woHo N+ woH; - N, (60)  dent wave approaching along=60°. As discussed before,

the scattering object has azimuthal symmetry aboutzhe
Each of the terms above of the foflnt is expressible as axis. However, in the latter case, the incidence direction of
an infinite series when we substitute the expression for thehe incident plane wave breaks the symmetry. The continuity
appropriate field expansion. Thus, for example, of the field patterns at the boundary validates the field calcu-
lations. Previously, such calculations were possible using nu-

oo n
i i T merical methods only.
El' t1: ngl mzzo {at%r{n( mi]mn‘ tl) + bl%njn( r"g]mn' tl)}'

(61 VIl. CONCLUSION

In order to obtain these coefficients we approximate the field An exact method of So|\/ing for e|ectromagnetic Scattering
expansions by truncating the series to a finite number ohas been developed. We have demonstrated the existence of
terms. The assumption of azimuthal symmetry allows they complete set of vector eigenfunctions for problems in elec-
differentm values to decouplg25]. tromagnetic scattering. The eigenfunction expansion con-
The remaining procedure is fairly straightforward. We verges sufficiently rapidly to be of importance for numerical

solve a linear system of equations derived from the boundargomputations. The expansion coefficients are determinable
condition equations. The incident fieldource terms are by imposing the boundary conditions. The solution method
completely known and they constitute the input vector. Thenas been developed for the spherical-polar coordinate system
left hand sides are linear expressions in the unknoaf\s  and is therefore applicable for scattering objects whose
by, a2 and b2 (with nemm+1,... m+N-1). boundaries do not extend to infinity. However, the technique
Specifying more points on the boundary or including moreis sufficiently general and can be generalized to other coor-
terms in the truncated expansion for the scattered fielddinate systems.
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