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General vector basis function solution of Maxwell’s equations

Dipankar Sarkar and N. J. Halas
Department of Electrical and Computer Engineering and Center for Nanoscale Science and Technology, Rice University,

P.O. Box 1892, Houston, Texas 77251
~Received 20 February 1997!

A general method for solving Maxwell’s equations exactly, based on expansion of the solution in a complete
set of vector basis functions, is developed. These vector eigenfunctions are derived from the complete set of
separable solutions to the scalar Helmholtz equation and are shown to form a complete set. The method is
applicable to a variety of problems, including the study of near and far field electromagnetic scattering from
particles with arbitrary shapes, for particles whose characteristic length scaled 'l, the wavelength of the
incident electromagnetic wave.@S1063-651X~97!06907-9#

PACS number~s!: 03.40.Kf, 03.50.De, 02.60.Lj
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I. INTRODUCTION

The subject of obtaining the solution of Maxwell’s equ
tions in a boundary value problem has kept scientists oc
pied for more than 100 years@1#. Many contemporary prob
lems of interest involve our knowledge of the exact solut
to these equations. However, the complexity of these eq
tions has defied analytic solutions for all but the simpl
cases.

In a scattering problem, for example, there are t
lengths involved:d, the physical size of the scattering obje
andl, the wavelength of electromagnetic waves in questi
Whend@l, called the geometrical optics limit, the proble
is readily solved. Whend!l, also called the quasistati
limit or nano-optics, the solution is obtained by solvin
Laplace’s equation. The problem is far more complica
whend'l. It is in this regime that one is required to solv
Maxwell’s equations exactly. Although the general theore
cal aspects of Maxwell’s equations are fairly well understo
at the moment@1,2#, there are still some formidable math
ematical or computational problems to overcome. Wher
the problem of acoustic~scalar fields! diffraction has been
solved in a number of cases such as the strip, elliptic cy
der, hyperbolic cylinder, wedge, prolate and oblate sp
roids, etc. @3#, the corresponding solution for the time
varying vector fields is still by and large unconquered. Of
the solution is worked out only in the quasistatic approxim
tion by solving Laplace’s equation~homogeneous case!
@4,5#.

In the absence of sources, Maxwell’s equations, which
coupled partial differential equations, have been solved a
lytically, only for a few isolated special cases. The simpl
canonical case of the scattering of plane waves reflectin
refracting at a planar interface@6# is commonly known as
Fresnel’s equations. The most celebrated analytic solutio
the scattering problem is that of Mie scattering, the scatte
of electromagnetic waves from a dielectric sphere@7#, origi-
nally due to Mie~1908!. Debye was able to formulate th
same problem in terms of a pair of coupled scalar functi
@8#, in which the electric and magnetic fields were express
The method was suitable for boundary value problems w
spherical boundaries only. Hansen@9–11# developed a tech
nique for addressing the problem of radiation from anten
561063-651X/97/56~1!/1102~11!/$10.00
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using a special type of transformation. The subject was
veloped further by Stratton@12#, who solved the problem o
Mie scattering using a set of vector functions derived fro
the solutions of the scalar Helmholtz equation. Subsequen
Aden and Kerker@13# used the formalism to solve the prob
lem of electromagnetic scattering from two concent
spheres. Although Stratton@12# had made considerable con
tributions in the area of basis function expansion, the met
of solution was still considered as just another ‘‘more
egant’’ way to solve the Mie problem, analogous to the a
proach of Debye@8#. The crucial idea that was missing at th
stage was the notion of mathematical completeness of b
function expansions. Furthermore, the algebraic difficult
one had to overcome restricted the Stratton approach to
solution of the spherical scatterer problem with incident lig
approaching along thez- axis only. Progress in this subjec
was negligible beyond this stage and the problem is rep
duced in its original form even in contemporary textboo
@14,15#. The problem of diffraction of a plane wave at no
mal incidence on a circular cylinder was originally solved
Rayleigh and since then his solution has been general
and extended to plane waves at oblique incidence@16#. The
method of basis function expansion was used in this prob
as well. Similarly, the problems of electromagnetic a
acoustic scattering from a semi-infinite cone@17# and a semi-
infinite body of revolution@18# were obtained by the metho
of basis function expansion. For the special case of the
raboloid, the solutions were ‘‘exact.’’ Some other notab
geometries for which the exact solution of electromagne
scattering has been obtained in three dimensions include
prolate and oblate ellipsoids. Certain two dimensional ca
such as the circular, parabolic, and elliptic cylinders, are a
amenable for exact solutions@3#. However, for arbitrary geo-
metrical shapes one has to resort to solving the Maxw
equations by finite element numerical techniques. The g
erality of these approaches was not apparently proved
yond the specific geometries these earlier researchers
interested in.

In the mid 1960s there began a growing interest in
study of Maxwell’s equations as a purely mathematical pr
lem @1,2#. For example, it was found that any electroma
netic response within a perfectly conducting cavity~resona-
tor! could be expressed in a complete set of functions@1,2#.
1102 © 1997 The American Physical Society
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56 1103GENERAL VECTOR BASIS FUNCTION SOLUTION OF . . .
In this paper we discuss a general method for solv
Maxwell’s equations in a boundary value problem with li
ear, isotropic, homogeneous, and time-invariant media.
introduce the diffraction equation in the next section. Ne
we prove the existence of a complete set of eigenfunction
the diffraction operator. This is followed by deriving th
eigenfunctions in a spherical-polar coordinate system and
expansion coefficients for an arbitrary plane wave in
complete set of eigenfunctions. We then demonstrate
merical convergence aspects of these eigenfunction ex
sions. Finally, we apply the technique of vector basis fu
tion expansion to the problem of scattering
electromagnetic waves from an elongated scatterer.

II. THE MAXWELL EQUATIONS

For the interesting subclass of problems that are relate
the scattering of electromagnetic radiation by dielec
and/or magnetic boundaries, Maxwell’s equations assum
symmetrical form. Within the approximation of a linea
time-invariant, homogeneous, and isotropic medium with
any external sources, Maxwell’s equations are, assum
sinusoidal time dependence of the external fields,e2 ivt,

“•E~r ,v!50, ~1!

“3E~r ,v!5 ivmH~r ,v!, ~2!

“•B~r ,v!50, ~3!

“3H~r ,v!5sE~r ,v!2 iveE~r ,v!. ~4!

Here we have assumed the possibility of an induced cur
density in the medium equal tosE, wheres is the conduc-
tivity of the medium under consideration. Thus we obtain
set of coupled partial differential equations in the spatial
ordinates alone, with the angular frequency of the excitat
as a parameter.

Using the facility of complex dielectric functions
ê5e1 is/v, we obtain the vector Helmholtz equations f
the electric and magnetic field vectors:

“3“3E2v2mêE50, ~5!

“3“3H2v2mêH50. ~6!

These equations are totally symmetrical and decoupled in
field variables. It is the solution to the vector Helmho
equations for specified boundary and radiation conditi
that describes the scattering of electromagnetic waves. H
ever, these equations are vector partial differential equat
which are sufficiently difficult to solve in general.

The theory of solving the scalar Helmholtz equation, a
known as the wave equation, is a very well developed s
ject @19–21#. This equation describes the propagation of s
lar waves, such as acoustic waves, in a medium.

“

2c~r ,t !1k2c~r ,t !50. ~7!

When expressed in certain orthogonal curvilinear coordin
systems, such as the Cartesian coordinate system or
spherical-polar coordinate system, under assumption of s
g
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soidal time dependence, the solutionc(r ,t) can be obtained
by the technique of separation of variables. The separa
procedure reduces the partial differential equation to sev
ordinary differential equations. The separated equations
often be cast in the form of the well known Sturm-Liouvil
eigenvalue problem for second order ordinary differen
equations, so that the solution space is guaranteed to be
plete for the scalar Helmholtz equation.

For the moment assume that we have obtained a comp
set of scalar functions$c% that are solutions to the scala
wave equation@Eq. ~7!#. We introduce the diffraction equa
tion

“~“•G!2“3“3G1k2G50, ~8!

wherek25v2mê. The diffraction equation is satisfied by th
electric fieldE and the magnetic fieldH that satisfies the
vector Helmholtz equations since the ‘‘extra’’ term“•G
will be zero for fields that have zero divergence. So, Eq.~8!
is consistent with Maxwell’s equations for electromagne
waves. We define a vector function that is obtained by tak
the gradient of the scalar functionc:

L5“c. ~9!

L satisfies the diffraction equation ifc is a solution to Eq.
~7!:

“~“•L !2“3“3L1k2L

5“~“•“c!2“3“3“c1k2“c

5“~¹2c1k2c! ~since“3“c50!

50 ~since “2c1k2c50!. ~10!

Now let us assume that there exists a vector functionM , with
zero divergence,“•M50, that is a solution to the diffrac
tion equation @Eq. ~8!#. Let us consider the vecto
N5(1/k)“3M . Assumingk is a constant~homogenous me-
dium!, we obtain

“~“•N!2“3“3N1k2N

5
1

k
@“~“•“3M !2“3“3“3M1k2“3M #

5“3@2“3~“3M !1k2M # @since“•~“3M !50#

5“3@“~“•M !2“3~“3M !1k2M #

~since“•M50!

50 @sinceM satisfies Eq.~8!#.

Thus we show thatN, as defined above, also satisfies t
diffraction equation. Also“•N50, since divergence of cur
is zero. So, if we had started with postulating the existence
a vector functionN with zero divergence, we could show
that there existsM with zero divergence. Thus from symme
try arguments alone, we could writeM5(1/k)“3N. Spe-
cifically, sinceN5(1/k)“3M , sincek is a constant~by as-
sumption of homogeneity of the medium!,
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1104 56DIPANKAR SARKAR AND N. J. HALAS
“3N5
1

k
“3“3M ,

“3N5
1

k
k2M @ follows from Eq.~8!#.

ThusM5(1/k)“3N. Clearly,M andN are distinct fromL ,
since the latter has nonzero divergence in general. SoL must
be linearly independent of$M ,N%. It is up to us to create a
vector functionM ~or equivalentlyN! from the given scalar
function c, such that it will have zero divergence and w
satisfy the diffraction equation. The point to note is that
could arrive at more than one set of functions$M ,N%, and it
is the relative algebraic convenience that will dictate
choice of a particular set.

As a concrete example, let us considerM5“3ac, where
c is the given scalar solution anda is an arbitrary constan
vector. The divergence condition is satisfied, since div
gence of curl is identically zero:“•M5“•(“3ac)50.
Using the operator identity~the author has verified thi
‘‘identity’’ for the spherical-polar coordinate sytem and th
cylindrical coordinate system in addition to the rectangu
coordinate system!, “(“•M )2“3“3M5“

2M , we can
write:

“~“•M !2“3“3M1k2M

5¹2M1k2M

5¹2~“3ac!1k2~“3ac!

5¹2@“c3a1c~“3a!#1k2@“c3a1c~“3a!#

5¹2~“c3a!1k2~“c3a! ~since“3a50!

5~¹2~“c!1k2“c!3a ~since“2 does not act ona!

5@“~¹2c1k2c!#3a50 ~since!c satisfies Eq.~7!.

Also,M5“3ac5“c3a5L3a. So,M•L50, i.e.,L and
M are orthogonal. Thus, given a countably infinite set
particular solutions to Eq.~7!, $cn%, that are finite, continu-
ous, single valued, and with continuous partial derivativ
associated with eachcn one can obtain a triplet of mutuall
noncoplanar vector solutions$Ln ,Mn ,Nn%, satisfying Eq.
~8!. Presumably, any arbitrary solution of the diffractio
equation can be expressed as a linear combination of t
vector functions. However, the existence of a generali
Fourier series expansion supposes that the set$Ln ,Mn ,Nn%
forms a complete set.

Proving the completeness of the set$Ln ,Mn ,Nn% is a two
step process. First, one has to prove the existence of a c
plete set of functions for the diffraction equation. Next, o
has to show that the$Ln ,Mn ,Nn% set can indeed span th
solution space of the diffraction equation, or equivalen
the vector Helmholtz equations. If the labeling indexn is not
countable, then an arbitrary solution could be expressed
generalized Fourier integral of the basis functions with
spect to the labeling parameter.
e
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III. COMPLETENESS OF VECTOR EIGENFUNCTIONS

Our goal is to represent the solution of electromagne
scattering problems in a series of vector eigenfunctions
the diffraction operator: to do so, such a set must be co
plete ~in a mathematical sense!. In other words, the set o
functions under consideration must form a basis. It can
shown that the solution space of the diffraction operator c
not be spanned by any finite set of functions. Assume m
mentarily that we have obtained only theLn functions from
the scalar solution, and that we have no knowledge about
existence of theMn or Nn functions. So we have a countab
infinite set of functions that satisfy the diffraction operato
But it is easy to prove that such a set does not form a ba
In other words, there are elements in the solution space
are independent of theLn functions. For example, theMn

functions defined asLn3a are clearly orthogonal to theLn

functions. Naturally, the same concerns are valid even w
knowledge of the larger set containing all three types
functions. We do need to address the question of whethe
not the set$Ln ,Mn ,Nn% is a complete set.

It is a well established fact that the set of all plane wa
solutions forms a complete set in the solution space of
vector Helmholtz operator. Physically this implies that a
scattered wave can be constructed by linear addition or
perposition of plane waves. The diffraction operator is som
what more general than the vector Helmholtz operator in
sense that it is satisfied by ‘‘generalized plane waves’’ wh
could have nonzero divergence. The vector Helmholtz eq
tion, which follows directly from Maxwell’s equations in a
homogeneous and isotropic medium, is satisfied only by
zero-divergence solutions. Within a nonisotropic medium
which momentum transfer can occur, such as in a crystal,
E need not be perpendicular tok, and the zero-divergenc
solutions cannot describe such a wave.

Although the set of all generalized plane waves spans
solution space, there is a fundamental difficulty with such
set, arising from the fact that such a set is uncountable
other words, the label~s! to identify the individual elements
of the set are in this case continuous variables~being the
value of the propagation vector, and its direction cosines,
the direction cosines of the electric field!. Although such sets
are not easily amenable for construction of general scatte
wave solutions, a countable basis can be used to cons
solutions in a straightforward manner.

To begin, the solution space of the diffraction operator
linear, has an inner product and a metric. The space is c
plete since there exists the plane wave set which we kno
a complete set. With these properties satisfied, the set o
solutions of the diffraction operator forms a Hilbert spac
The inner product can be defined, as will be seen when c
sidering the solutions in a particular coordinate system, s
as the spherical polar coordinate system.

It can be shown that if$ei% is an orthonormal set in a
Hilbert spaceH, and if x is any vector inH, then the set
S5$ei :^xuei&Þ0% is either empty or countable@22#. The im-
portance of this theorem is that this guarantees a count
basis if it exists. It can also be shown that every nonz
Hilbert space contains a complete orthonormal set. This
lows from fundamental axioms of set theory embodied
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56 1105GENERAL VECTOR BASIS FUNCTION SOLUTION OF . . .
Zorn’s lemma@23#. Thus a Hilbert space contains a coun
able basis.

A. Completeness of the L, M, N set

We have already seen that we can arrive at a
$Ln ,Mn ,Nn% of vector eigenfunctions that are mutually no
coplanar. In general“cn and“cn8 are different functions of
position coordinates. Similarly, it can be argued that the
of vector eigenfunctions is such that at any given point
space, they are not all pointing in the same direction.
mathematical language, the set is linearly independent.
set also has a countably infinite number of elements in
The scalar functions$cn% are continuous with continuou
partial derivatives up to at least second order. This imp
that the derived vector functions are continuous as well.

Assume that we are given an arbitrary solution to
diffraction equation,x. By saying that we are given the so
lution, we mean that its value has been specified at a g
set of points,S5$x1 ,x2 , . . . %. For the moment let us assum
that this setS is a countable set, as we have indicated
subscripting with natural numbers. For example, if the va
has been specified at all coordinates (x,y,z) where x,y,z
P$p/q:p,qPI %, then the set can be shown to be countab
Thus the specified set of points can be put in one-to-
correspondence with an index set, such as the natural n
bers.

Now if we pick the first specified point where the functio
is defined, we obtain a vector of a certain magnitude wh
points along some specified direction. We can immedia
pick the triplet of solutions$L1 ,M1 ,N1%, and by virtue of
their linear independence, we can choose suitable co
cients so that the suma1L11b1M11c1N15x1, where the
coefficientsa1 ,b1 ,c1 are complex numbers. Since the le
hand side is a linear combination of solutions to the diffra
tion equation, we have a valid solution that is equal to
specified solutionx at one point. In general the diffractio
operator will propagate the linear combinatio
a1L11b1M11c1N1 so that it will be different from the
specified solution at other points~if it does not, then of
course we have obtained the desired expansion, and we
stop the process here!. So assume that the linear combinati
just obtained deviates from the solution at point 2,x2. Now
we can pick our second triplet$L2 ,M2 ,N2%, and obtain a
‘‘correction’’ to the original solution so that it matches
both the points. Essentially, we are solving a system of
equations in six unknowns to satisfy the match at the t
specified points. Now it is easy to see that we can conti
this process to ‘‘match’’ the specified function in an infini
series of the set of vector eigenfunctions to any arbitr
precision. By virtue of continuity of these functions, the
linear combinations are also continuous for any finite nu
ber of terms. The difference between the arbitrary solut
and the series just obtained can in principle be made as s
as we wish; i.e., it forms a Cauchy sequence. We note
the set of expansion coefficients so obtained neednot be
unique. It does depend upon the order in which we pick
the vector eigenfunctions to satisfy the conditions for
match.

The validity of the statement of convergence of arbitra
Cauchy sequences follows from general considerations
et
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more restricted space of square-integrable functions,L2, with
a semimetric. We know that the scattered solutions hav
satisfy the radiation conditions, i.e., they have to vanish
infinity in a square-integrable sense. This follows from t
finite energy content in any scattered wave from finite o
jects. TheL , M , andN functions satisfy such conditions. I
can be shown~the Reisz-Fischer theorem! that every Cauchy
sequence in the semimetric spaceL2 converges to a function
in L2, or that it is complete@24#.

Although the set of functions$Ln ,Mn ,Nn% is not entirely
orthogonal, it is a linearly independent set. This allows us
invoke the process known as Gram-Schmidt orthonormal
tion to obtain a complete orthonormal set from a given se
linearly independent vectors@22#. In practice, this is not al-
ways necessary.

B. Zero-divergence solutions

Consider a solutionF whose divergence is zero. Let u
find an expansion ofF in terms of the basis$Ln ,Mn ,Nn%, so
that

F5(
n

$anMn1bnNn1cnLn%. ~11!

Taking the divergence of both sides of the above equat
we find

“•F5(
n

$an“•Mn1bn“•Nn1cn“•Ln%

or

05(
n

$cn“•Ln%. ~12!

Since this must hold true at all points, we conclude that
thecn must be zero. In other words, a zero-divergence so
tion can be expressed only in terms of theM andN func-
tions.

IV. THE L, M, N BASIS

The success of the method of vector basis function exp
sion relies on our ability to express, conveniently, the in
dent radiation in terms of these basis functions. Although
completeness of this basis set guarantees the existenc
unique coefficients for the expansion of an incident pla
wave, in practice this involves some nontrivial algebra. T
goal is to obtain explicit expansion coefficients for a gene
plane wave in these basis eigenfunctions. Linearity of M
well’s equations implies that any excitation, nonplanar
even nonperiodic, could in principle be solved from t
known solution to plane wave excitations by use of Four
space analysis.

In principle, the set of basis functions obtained in a
general orthogonal coordinate system could be consider
valid set of eigenfunctions in which the solution could
expressed. However, strictly algebraic and numerical con
erations favor the use of functions pertaining to t
spherical-polar coordinate system, especially for syste
with azimuthal symmetry. The extensive analytical found
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1106 56DIPANKAR SARKAR AND N. J. HALAS
tion of spherical Bessel or Hankel functions as well as as
ciated Legendre functions allows us to obtain the expans
coefficients in closed form expression.

The solutions to the scalar Helmholtz equation
spherical-polar coordinates are functions of the form

cmn~r ,u,f!;zn~kr !Pn
m~cosu!eimf, ~13!

wherezn(kr) represents either the spherical Bessel functi
j n(kr) or the spherical Hankel functions of the first kin
hn
(1)(kr). The spherical Bessel functions are regular at
origin, whereas the spherical Hankel functions diverge a
near the origin. So a region including the origin can on
feature the spherical Bessel functions in its expression
the field. A region not including the origin can have co
tributions from either of these functions. The labelin
index nP$0,1,2, . . .% and mP$0,61,62, . . . ,6n%. The
Pn
m(cosu) are the associated Legendre functions.
Analogous to the definitions Stratton@12# uses, we obtain

explicit expressions for theL , M , N functions@25#:

Lmn5“cmn

5kH dzn~kr !d~kr !
Pn
m~cosu!eimfer1

zn~kr !

kr

dPn
m~cosu!

du

3eimfeu1 im
zn~kr !

kr

Pn
m~cosu!

sin u
eimfefJ , ~14!

Mmn5 imzn~kr !
Pn
m~cosu!

sin u
eimfeu

2zn~kr !
dPn

m~cosu!

du
eimfef , ~15!

and

Nmn5n~n11!
zn~kr !

kr
Pn
m~cosu!eimfer

1
1

kr

drzn~kr !

dr

dPn
m~cosu!

du
eimfeu

1 im
1

kr

drzn~kr !

dr

Pn
m~cosu!

sin u
eimfef . ~16!

V. PLANE WAVE EXPANSION IN L, M, N BASIS

The completeness of the set of functionsL , M , andN
assures us of the existence of a valid expansion series in
basis set for an arbitrary plane electromagnetic wave wh
satisfies the diffraction equation. Once a valid set of coe
cients is obtained, we can offer an operational proof of
completeness theorem. If any plane wave can be represe
in a convergent series of these functions, then it immedia
implies that the set must be complete. This follows from
fact that any scattered solution to the vector Helmholtz eq
tion can be constructed from a plane wave basis.

Consider an arbitrary plane wave:
o-
n

s

e
r

r

his
h
-
e
ted
ly
e
a-

F5Eeik•r. ~17!

HereE5Exex1Eyey1Ezez is the ~oscillating! electric field
of the plane wave,k5(k,a,b) is the propagation vector, an
r5(r ,u,f) is the position coordinate. To keep our deriv
tion sufficiently general, we shall allow the orientation ofE
andk to be along arbitrary directions. In reality, for a plan
electromagnetic wave in a homogeneous and isotropic
dium, theE andk must be orthogonal, and so the divergen
of F must vanish. We shall also allowEx ,Ey ,Ez , andk to
be complex numbers. This represents any general elliptic
polarized wave propagating in a medium that can be eit
attenuating or amplifying.

The completeness of the set of functions validates
following representation:

exe
ik•r5(

mn
$amn

x Mmn1bmn
x Nmn1cmn

x Lmn%, ~18!

eye
ik•r5(

mn
$amn

y Mmn1bmn
y Nmn1cmn

y Lmn%, ~19!

eze
ik•r5(

mn
$amn

z Mmn1bmn
z Nmn1cmn

z Lmn%. ~20!

Therefore we can write the general plane wave expansio

Eeik•r5(
mn

$~Examn
x 1Eyamn

y 1Ezamn
z !Mmn

1~Exbmn
x 1Eybmn

y 1Ezbmn
z !Nmn

1~Excmn
x 1Eycmn

y 1Ezcmn
z !Lmn . ~21!

If E is represented by (E,u i ,f i), in the spherical-polar co-
ordinate system, then

Ex5E sin u i cosf i , Ey5E sin u i sin f i ,

Ez5E cosu i . ~22!

Therefore we need to obtain the nine coefficien
$amn

x ,amn
y , . . . ,cmn

z % which are functions of$n,m,a,b%.
It can be shown that the exponential part of the express

for a plane wave can be expanded in the following serie

eik•r5(
s50

`

i s~2s11! j s~kr !

3H (
l50

s
~s2 l !!

~s1 l !!
Ps
l ~cosa!e2 i l bPs

l ~cosu!eilf

1(
l51

s
~s2 l !!

~s1 l !!
Ps
l ~cosa!eil bPs

l ~cosu!e2 i lfJ .
~23!

We denoteece
ik•r[Ec , where c denotesx, y, or z. We

introduce the notation
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E
0

`

drE
0

p

du sinu E
0

2p

dfEc•Xmn* 5E Ec•Xmn* 5^EcuXmn&,

whereXmn representsLmn , Mmn , or Nmn . We can view
^EcuMmn& as the definition of theinner productin the Hilbert
space of all solutions to the diffraction equation.

From Eq. ~20!, we can calculate the coefficien
$amn

z ,amn
z ,cmn

z % using certain orthogonality relations@25#.
Obtaining the inner product of both sides of the equat
with respect toLmn , Mmn , andNmn , respectively, we obtain
the following relations:

amn
z 5

^EzuMmn&

^MmnuMmn&
, ~24!

bmn
z 5

^EzuLmn&^LmnuNmn&2^EzuNmn&^LmnuLmn&

^NmnuLmn&^LmnuNmn&2^NmnuNmn&^LmnuLmn&
,

~25!
n

cmn
z 5

^EzuNmn&^NmnuLmn&2^EzuLmn&^NmnuNmn&

^NmnuLmn&^LmnuNmn&2^NmnuNmn&^LmnuLmn&
.

~26!

By substituting the labelz with x or y in Eqs.~24!–~26!,
we immediately obtain the corresponding formula for t
remaining coefficients in terms of their inner products w
the basis set functions.

The integrals represented by the various inner product
the expressions for the coefficients require a good dea
messy algebra and careful analysis for their evaluation@25#.
The integrands involve products of spherical Bessel fu
tions, associated Legendre functions, as well as their der
tives. The nontriviality of these integrations is amplified b
the fact that one has to evaluate a double infinite summa
~overs and l ) to arrive at a closed form expression for the
integrals. On substituting the expressions for these integ
back into Eqs.~24!–~26!, we finally obtain the functional
form for the coefficients~for m>0):
ll the

re

s for the
amn
z ~n,m,a,b!

~m>0!
5 i n11

m~2n11!

n~n11!

~n2m!!

~n1m!!
Pn
m~cosa!e2 imb, ~27!

bmn
z ~n,m,a,b!

~m>0!
5

i n11

n~n11!

~n2m!!

~n1m!!
e2 imbF n~n2m11!Pn11

m ~cosa!

2~n11!~n1m!Pn21
m ~cosa!G , ~28!

cmn
z ~n,m,a,b!

~m>0!
5
i n21

k

~n2m!!

~n1m!!
~2n11!e2 imbcosaPn

m~cosa!. ~29!

We observe that whena5p/2, so thatE andk are perpendicular to each other as in a plane electromagnetic wave, a
cmn
z coefficients vanish, since the divergence of such a field is zero. Whena50 or p all the amn

z coefficients vanish since
Pn
m(61)50 for m.0, andamn

z vanish form50 because of the factorm in its expression. Similarly, thebmn
z vanish for

a50 or p sincePn
m(61)50 for m.0, and form50 Pn8(61)(21)n8 for m50 so that the expression within the squa

brackets becomes form50, n(n11)12(n11)n50. So whena50 or p only thecmn
z coefficients can be nonzero.

Whenm,0, we can arrive at the corresponding coefficients by examining the changes that occur in the expression
individual inner product terms. It can be shown from considerations of parity of the associated Legendre functions@25# that the
corresponding coefficients whenm,0 are given by

a2mn
z ~n,m,a,b!

~m>0!
5~21!m11e2imb

~n1m!!

~n2m!!
amn
z ~n,m,a,b!, ~30!

b2mn
z ~n,m,a,b!

~m>0!
5~21!me2imb

~n1m!!

~n2m!!
bmn
z ~n,m,a,b!, ~31!

c2mn
z ~n,m,a,b!

~m>0!
5~21!me2imb

~n1m!!

~n2m!!
cmn
z ~n,m,a,b!. ~32!

Similarly, thex coefficients are given as

amn
x ~n,m,a,b!

~m>0!
5 i n11

~2n11!

2n~n11!

~n2m!!

~n1m!!
3F ~n1m!~n2m11!Pn

m21~cosa!e2 i ~m21!b

1Pn
m11~cosa!e2 i ~m11!bG , ~33!
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bmn
x ~n,m,a,b!

~m>0!
5 i n11

1

2n~n11!

~n2m!!

~n1m!!
3F ~n11!~n1m!~n1m21!Pn21

m21~cosa!e2 i ~m21!b

2~n11!Pn21
m11~cosa!e2 i ~m11!b

1n~n2m12!~n2m11!Pn11
m21~cosa!e2 i ~m21!b

2nPn11
m11~cosa!e2 i ~m11!b

G , ~34!

cmn
x ~n,m,a,b!

~m>0!
5
i n11

2k

~n2m!!

~n1m!!
3F ~n1m!~n1m21!Pn21

m21~cosa!e2 i ~m21!b

2Pn21
m11~cosa!e2 i ~m11!b

2~n2m12!~n2m11!Pn11
m21~cosa!e2 i ~m21!b

1Pn11
m11~cosa!e2 i ~m11!b

G . ~35!

Form,0, the easiest way to obtain the coefficients are the following@25#:

a2mn
x 5~21!m11

~n1m!!

~n2m!! Famn
x with e2 i ~m61!b factors

changed toei ~m61!b G , ~36!

b2mn
x 5~21!m

~n1m!!

~n2m!! Fbmn
x with e2 i ~m61!bfactors

changed toei ~m61!b G , ~37!

c2mn
x 5~21!m

~n1m!!

~n2m!! Fcmn
x with e2 i ~m61!bfactors

changed toei ~m61!b G . ~38!

The y-coefficients are obtained almost identically as compared with thex coefficients. We have

amn
y ~n,m,a,b!

~m>0!
5 i n

~2n11!

2n~n11!

~n2m!!

~n1m!!
3F ~n1m!~n2m11!Pn

m21~cosa!e2 i ~m21!b

2Pn
m11~cosa!e2 i ~m11!bG , ~39!

bmn
y ~n,m,a,b!

~m>0!
5 i n

1

2n~n11!

~n2m!!

~n1m!!
3F ~n11!~n1m!~n1m21!Pn21

m21~cosa!e2 i ~m21!b

1~n11!Pn21
m11~cosa!e2 i ~m11!b

1n~n2m12!~n2m11!Pn11
m21~cosa!e2 i ~m21!b

1nPn11
m11~cosa!e2 i ~m11!b

G , ~40!

cmn
y ~n,m,a,b!

~m>0!
5

i n

2k

~n2m!!

~n1m!!
3F ~n1m!~n1m21!Pn21

m21~cosa!e2 i ~m21!b

1Pn21
m11~cosa!e2 i ~m11!b

2~n2m12!~n2m11!Pn11
m21~cosa!e2 i ~m21!b

2Pn11
m11~cosa!e2 i ~m11!b

G . ~41!

Transformations similar to what was used for thex coefficients form,0 are going to be valid for they coefficients as well.
Thus they coefficients for negativem can be obtained as follows@note the extra (21) factor as compared to thex
transformations#:

a2mn
y 5~21!m

~n1m!!

~n2m!! Famn
y with e2 i ~m61!bfactors

changed toei ~m61!b G , ~42!

b2mn
y 5~21!m11

~n1m!!

~n2m!! Fbmn
y with e2 i ~m61!b factors

changed toei ~m61!b G , ~43!

c2mn
y 5~21!m11

~n1m!!

~n2m!! Fcmn
y with e2 i ~m61!b factors

changed toei ~m61!b G . ~44!
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FIG. 1. Demonstrating completeness of ba
function expansion. The expansion of an arb
trarily chosen wave in theL ,M , andN functions.
The solid lines show exact values. The brok
lines are computed from a truncated series in
basis functions. The above calculations are do
with 15 terms (n515) for krP @0,12#, u537°,
f559°, a5123°, b583°, ue549°, and
fe521°. Convergence is very good fo
ukru<0.75n. The horizontal axes are in units o
ukru.
n
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Numerical convergence of basis function expansion

It may be pointed out that the coefficients for the expa
sion of an arbitrary plane wave in terms of theL, M, N basis
are not necessarily unique. Alternate sets of expansion c
ficients can be obtained by rearranging the basis. This
lows directly from the general theory of orthonormal bases
Hilbert spaces. Since one can expand any plane wave in
basis, as discussed earlier, one can obtain an operat
proof of the completeness of this basis. It is also importan
address the question of convergence as well. So nume
verifications are absolutely necessary to validate a cer
basis set. To summarize the results, convergence of b
than 1% is normally achieved by taking terms up to ind
-

ef-
l-
n
is
nal
o
al
in
ter
x

n, wheren;1.4ukru. This can provide us with the guidelin
on how many terms to include for a problem in which t
geometry can be measured in units ofl, the wavelength of
the electromagnetic field in question.

In Figs. 1 and 2 we show the expansion of arbitrary el
tromagnetic waves in theL, M, N basis. We have specifie
an arbitrarily directed wave vectork with direction cosines
a andb, with the electric field oriented along some arbitra
direction specified by the anglesue andfe . The values of
the exact expression forEeik•r and the series expansion i
theL, M, N basis are compared along some arbitrarily spe
fied line directed along (u,f). We observe that the conver
gence is very good forukru<0.75n and this is fairly inde-
sis
c-
s.
ed
la-
FIG. 2. Demonstrating completeness of ba
function expansion when the specified wave ve
tor is complex. The solid lines show exact value
The broken lines are computed from a truncat
series in the basis functions. The above calcu
tions are done with 15 terms (n515) for
krmax51018i , u535°, f542°, a597°,
b582°, ue521°, andfe579°. Convergence is
very good for ukru<0.75n. The horizontal axes
are in units ofukru.
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pendent of the choice of the specified directions forE andk
as well as the path along which the comparison calculati
are made. In Fig. 1 the wave vector is real whereas in Fi
the wave vector is complex. Complex wave vectors cor
spond to an attenuating or amplifying medium. We theref
demonstrate that these functions can be used to expan
electromagnetic field in a general medium. Since the sp
fied E andk are not orthogonal in general~as in the above
two cases!, it is therefore possible to expand waves that
more general than plane electromagnetic waves in a no
tenuating medium.

VI. SCATTERING FROM NONSPHERICAL OBJECTS

As an application of the method of vector basis functi
expansion, we discuss an ‘‘exact’’ method of solution f
scattering from an object whose boundaries do not conf
to the coordinate surfaces in a given coordinate system~the
spherical-polar coordinate system in this case!.

The scattering object is a ‘‘capsule,’’ composed of tw
hemispheres of radiusR, separated by a cylinder of radiu
R and lengthL. The origin is chosen to coincide with th
center of the lower hemisphere as indicated in Fig. 3. W
L→0 the capsule degenerates to a sphere of radiusR whose
scattering solution can be obtained exactly. The axis of s
metry coincides with thez axis.

The eigenfunctions satisfy Maxwell’s equations as well
the boundary conditions at infinity. The expansion coe
cients of the scattered solution are determined by requi
that the boundary conditions on the surface of the ‘‘capsu
are satisfied at a finite number of chosen points. In princi
the larger the number of points we choose to specify,
more accurate will be the description of the boundary.

Thus there are two regions: inside the capsule surf
where the dielectric function ise1, and outside the surfac
where the dielectric function ise2. We assumee2 to be a real
function of the incident wave frequency. This validates t
expansion of the incident electric field in the spherical Bes
function solutions. Since the origin is enclosed within t
surface, the solution in region 1 will have the spheric
Bessel function solutions only.

Consider ans-polarized incident wave of unit strengt
(uEi u51) with the polarization oriented along they-axis and
k confined to thex-z plane (b50):

Ei5 (
n51

`

(
m50

n

$amnmemn
2 j 1bmnnomn

2 j %, ~45!

H i52 iAe2
m2

(
n51

`

(
m50

n

$bmnmomn
2 j 1amnnemn

2 j %, ~46!

whereamn52amn
y andbmn52ibmn

y , and the superscript 2 fo
them andn functions refers to medium 2. The superscrip
j andh refer to spherical Bessel functions or spherical Ha
kel functions of the first kind. Here

1

2i
~Mmn2Mmn* !5momn, ~47!
s
2
-
e
an
i-

e
at-

r
m

n

-

s
-
g
’’
,
e

e

e
el

l

-

1

2
~Mmn1Mmn* !5memn, ~48!

1

2i
~Nmn2Nmn* !5nomn, ~49!

1

2
~Nmn1Nmn* !5nemn. ~50!

We assume the scattered electromagnetic fields in the
regions to have the following forms~expanding in the
m>0 terms only! :

E15 (
n51

`

(
m50

n

$amn
1 j memn

1 j 1bmn
1 j nomn

1 j %, ~51!

H152 iAe1
m1

(
n51

`

(
m50

n

$bmn
1 j momn

1 j 1amn
1 j nemn

1 j %, ~52!

E25 (
n51

`

(
m50

n

$amn
2hmemn

2h 1bmn
2h nomn

2h %, ~53!

H252 iAe2
m2

(
n51

`

(
m50

n

$bmn
2hmomn

2h 1amn
2h nemn

2h % ~54!

For each point on the surface, we can write down
equations corresponding to the boundary conditions. Not
of them are linearly independent. In fact whenL50, corre-
sponding to a sphere, the equations of continuity of the t
gential fields ofE andH alone will yield a linearly indepen-
dent set:

FIG. 3. ~a! Geometry of ‘‘capsule’’ shaped scattering objec
Two hemispheres of radiusR are attached to the end of a cylinde
of lengthL. Letting L→0, the capsule degenerates to a sphere.~b!
Approximating the azimuthally symmetrical surface by means
the discrete set of anglesu i . r as a function ofu is specified by a
piecewise continuous function.n indicates the normal andt the
tangent orthogonal toef .



in

l

th

e
o

th

e
a

h

re
ld

to
e of
ely

t-
tem

al
g
n.
ion

inci-
,
e
of

uity
lcu-
nu-

ing
ce of
ec-
on-
al
ble
od
tem
ose
ue
or-

ica
g
th

e’’
s
of

56 1111GENERAL VECTOR BASIS FUNCTION SOLUTION OF . . .
E1•t15E2•t11Ei•t1 , ~55!

E1•t25E2•t21Ei•t2 , ~56!

H1•t15H2•t11H i•t1 , ~57!

H1•t25H2•t21H i•t2 . ~58!

In general, we have the remaining two equations aris
from the continuity of the normal components ofD5eE and
B5mH. Heren ~without the subscripts! refers to the norma
vector and not one of the field functions :

e1E1•n5e2E2•n1e2Ei•n, ~59!

m1H1•n5m2H2•n1m2H i•n. ~60!

Each of the terms above of the formE•t is expressible as
an infinite series when we substitute the expression for
appropriate field expansion. Thus, for example,

E1•t15 (
n51

`

(
m50

n

$amn
1 j ~memn

1 j
•t1!1bmn

1 j ~nomn
1 j

•t1!%.

~61!

In order to obtain these coefficients we approximate the fi
expansions by truncating the series to a finite number
terms. The assumption of azimuthal symmetry allows
differentm values to decouple@25#.

The remaining procedure is fairly straightforward. W
solve a linear system of equations derived from the bound
condition equations. The incident field~source! terms are
completely known and they constitute the input vector. T
left hand sides are linear expressions in the unknownsamn

1 j ,
bmn
1 j , amn

2h , and bmn
2h ~with nPm,m11, . . . ,m1N21).

Specifying more points on the boundary or including mo
terms in the truncated expansion for the scattered fie

FIG. 4. Near field electromagnetic scattering from a spher
scatterer.R50.5l andL50. The incident light approaches alon
u i50o. Polarization is directed perpendicular to the plane of
figure.
g

e

ld
f
e
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e

s

would tend to give us increasingly better approximations
the exact solution but at the expense of increasing the siz
the boundary-condition matrix. The system is deliberat
allowed to be an overdetermined system~number of rows
M.N, number of columns! since we are considering sca
tering objects with arbitrary shapes. We can solve the sys
in a least-squares sense.

In Fig. 4 we show the near field calculation of a spheric
scatterer (L50), with the incident wave approaching alon
u50o. The sphere allows us to verify the method of solutio
Poynting vector calculations done using the basis funct
solution, both in the near and far fields@25#, are in excellent
agreement with existing literature@26#. In Fig. 5 we show the
calculation done on a capsule shaped scatterer with the
dent wave approaching alongu560o. As discussed before
the scattering object has azimuthal symmetry about thz
axis. However, in the latter case, the incidence direction
the incident plane wave breaks the symmetry. The contin
of the field patterns at the boundary validates the field ca
lations. Previously, such calculations were possible using
merical methods only.

VII. CONCLUSION

An exact method of solving for electromagnetic scatter
has been developed. We have demonstrated the existen
a complete set of vector eigenfunctions for problems in el
tromagnetic scattering. The eigenfunction expansion c
verges sufficiently rapidly to be of importance for numeric
computations. The expansion coefficients are determina
by imposing the boundary conditions. The solution meth
has been developed for the spherical-polar coordinate sys
and is therefore applicable for scattering objects wh
boundaries do not extend to infinity. However, the techniq
is sufficiently general and can be generalized to other co
dinate systems.

l

e

FIG. 5. Near field electromagnetic scattering from a ‘‘capsul
scatterer.R50.5l and L50.3l. The incident light approache
alongu i560o. Polarization is directed perpendicular to the plane
the figure.
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